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Abstract

Recently, large language models (LLMs) have garnered sig-
nificant attention due to their advancements in natural lan-
guage processing, demonstrating unparalleled capabilities in
text understanding and generation. Furthermore, research on
synthesizing high-fidelity complex images from text has been
extremely popular in the past two years. However, research
on multimodal large language models (MM-LLMs) is just
beginning. If existing well-performing encoders or decoders
can be fully utilized in MM-LLMs, it would significantly re-
duce the training cost. This paper illustrates how we can in-
tegrate a large language model with a diffusion model for
Text-to-Image (T2I) by fine-tuning less than 1% of parame-
ters. This integration enables image generation within a con-
versation, achieving a quality comparable to the original dif-
fusion model. Simultaneously, through a similar fine-tuning
approach, more modalities (such as audio and video) can be
aligned with the large language model to obtain a feature-rich
multimodal large language model.

Introduction
In the recent past, certain Artificial Intelligence Gener-
ated Content (AIGC) technologies have witnessed unparal-
leled advancements, including ChatGPT for textual genera-
tion(OpenAI 2023) and diffusion models(Fan et al. 2023) for
visual creation. Notably, the emergence of large language
models (LLMs) such as Flan-T5(Chung et al. 2022), Vi-
cuna(Chiang et al. 2023), Llama(Touvron et al. 2023), and
Alpaca(Taori et al. 2023) has been remarkable. These mod-
els exhibit their impressive capabilities of language reason-
ing and decision-making at a human level, illuminating the
route towards Artificial General Intelligence (AGI). Funda-
mentally, our world is multimodal. Humans interact with the
world using various sensory organs that perceive different
modalities of information (like language, images, videos,
sounds, etc.), and these information modalities often sup-
plement and work in tandem with each other. Guided by this
understanding, LLMs that were initially text-based have re-
cently been equipped with the ability to understand and per-
ceive other modalities such as vision, video, audio, etc.

An approach worth mentioning is the use of adapters to
synchronize other types of pre-trained encoders with text
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Sure! Here is a brief tutorial on how to make a pizza:
1. Preheat your oven to 450°F (230°C).
2. Roll out your pizza dough on a floured surface until it is the desired size and 
shape.
3. Add your desired toppings, such as tomato sauce, cheese, and vegetables.
4. Bake the pizza in the preheated oven for 10-15 minutes, or until the crust is 
golden brown and the cheese is melted and bubbly.
5. Remove the pizza from the oven and let it cool for a few minutes before 
slicing and serving.
Remember to have fun and experiment with different toppings to make your 
own unique pizza!

: Draw a pizza sitting on top of a table with sausage and cheese.

Can you give me a brief tutorial on how to make a pizza?

🤖 Beyond CLIP

🤖 Beyond CLIP

Figure 1: Our model is not only capable of engaging in nor-
mal conversations but with minor modifications, it can also
generate images.

language models. This initiative has spurred the swift evo-
lution of multimodal LLMs (MM-LLMs), including mod-
els like BLIP-2(Li et al. 2023a), Flamingo(Alayrac et al.
2022), MiniGPT-4(Zhu et al. 2023), Video-LLaMA(Zhang,
Li, and Bing 2023), LLaVA(Liu et al. 2023), PandaGPT(Su
et al. 2023), SpeechGPT(Zhang et al. 2023b). However,
these studies primarily concentrate on understanding mul-
timodal content at the input stage and cannot produce con-
tent in multiple modalities beyond text. We underscore that
genuine human cognition and communication indispensably
necessitate fluid transitions between any information modal-
ities. This necessitates the investigation of any-to-any MM-
LLM as a vital step towards realizing true AGI, which in-



volves accepting input in any modality and delivering re-
sponses in a suitable form of any modality.

Initiatives have been undertaken to emulate the any-to-
any mode transformation akin to human beings. Recently,
advancements have been made by CoDi(Tang et al. 2023) in
the capability to process and generate any mix of modalities
concurrently. However, it falls short in terms of the reason-
ing and decision-making capabilities inherent in the LLM
and is confined to basic pairwise content creation. Con-
versely, attempts such as Visual-ChatGPT(Wu et al. 2023)
and HuggingGPT(Shen et al. 2023) strive to amalgamate
LLM with external instruments to accomplish an approxi-
mate ‘any-to-any’ multimodal comprehension and genera-
tion. Regrettably, owing to the comprehensive pipeline ar-
chitecture, these systems encounter significant obstacles.
Primarily, the information exchange between different mod-
ules relies entirely on the discrete text produced by LLM,
where the cascading procedure inevitably leads to noise and
propagation errors. More crucially, the entire system solely
employs existing pre-trained tools for inference. Owing to
the absence of comprehensive end-to-end training in error
propagation, the capacity for content comprehension and
multimodal generation might be considerably restricted. In
essence, there is a pressing requirement to construct an end-
to-end MM-LLM for any modality.

To achieve such a goal, we first attempt the T2I task. Ini-
tially, we use an existing open-source LLM(Touvron et al.
2023) as the core for semantic understanding and reason-
ing. This LLM not only generates text tokens but also de-
termines whether to convert these tokens into text or pass
them into the mapping layer to enter the subsequent diffu-
sion model(Rombach et al. 2022), as needed. As shown in
Figure 1.

Training such a model from scratch requires an ex-
tremely large amount of computational resources and does
not fully utilize the existing pre-trained weights. Therefore,
in the method of this paper, we make full use of the well-
performing pre-trained LLM and diffusion model. By load-
ing ready-made parameters, we not only avoid cold start
training but also provide valuable experience for subsequent
work on more modalities. To align the features of the LLM
and diffusion model, we only train some adapter layers and
mapping layers, the parameter volume of which is less than
1% of the model parameters, and all other pre-trained pa-
rameters are frozen. We found that through such operations,
comparable results to the original diffusion model can be
achieved on the T2I task. In summary, the contributions of
this paper are as follows:

• We propose a novel approach to integrate LLMs with
diffusion models as a component of MM-LLMs. Based
on this approach, we can also combine LLMs with other
modalities similarly for subsequent tasks.

• We employ a lightweight alignment learning technique
that only trains some adapter layers and mapping layers
and requires minimal parameter adjustments (only 1% of
the parameters) to achieve effective semantic alignment.

Related Work
Text-to-Image Large Models
Lately, substantial pre-trained autoregressive and diffusion
models have exhibited exceptional outcomes in the realm
of text-to-image synthesis. Models like DALL-E(Ramesh
et al. 2021), CogView(Ding et al. 2021), and M6(Lin et al.
2021) employ VQ-VAE(Van Den Oord, Vinyals et al. 2017)
or VQ-GAN(Esser, Rombach, and Ommer 2021) to tran-
scribe images into distinct image tokens. These tokens, in
conjunction with word tokens, are subsequently utilized
to pre-train a significant unidirectional transformer for au-
toregressive generation. Parti(Yu et al. 2022) presents a
sequence-to-sequence autoregressive model to perceive text-
to-image synthesis as a translation task. Cogview2(Ding
et al. 2022) uses hierarchical transformers and local par-
allel autoregressive generation for accelerated autoregres-
sive image generation. Certain studies endeavor to apply the
diffusion model(Dhariwal and Nichol 2021; Ho, Jain, and
Abbeel 2020; Ho et al. 2022; Nichol and Dhariwal 2021;
Sohl-Dickstein et al. 2015) to rectify the slow generation
drawback of the autoregressive model. VQ-Diffusion(Gu
et al. 2022) amalgamates the VQ-VAE(Van Den Oord,
Vinyals et al. 2017) and diffusion model(Ho et al. 2022;
Nichol and Dhariwal 2021) to eliminate the unidirectional
bias and avert accumulated prediction errors. GLIDE(Nichol
et al. 2021) employs guided diffusion to address the is-
sue of text-conditional image synthesis. DALL-E2(Ramesh
et al. 2022) combines the CLIP representation and diffusion
model to construct a CLIP decoder. Latent Diffusion Mod-
els (LDM)(Rombach et al. 2022) implement the diffusion
model in the latent space to enable training on restricted
computational resources while preserving image quality. A
particular text-to-image LDM is Stable Diffusion, a well-
liked open-source project that provides an easy-to-use inter-
face. Imagen(Saharia et al. 2022) integrates the large lan-
guage model(Raffel et al. 2020) to produce high-quality text
features and proposes an Efficient U-Net for diffusion mod-
els.

Multimodal Large Language Models
LLMs have already catalyzed substantial shifts and inno-
vations throughout the AI community and beyond. The
most prominent LLMs, specifically OpenAI’s ChatGPT and
GPT4(OpenAI 2023), armed with alignment techniques
such as instruction tuning(Ouyang et al. 2022; Li et al.
2023c; Zhang et al. 2023c; Liu et al. 2023) and reinforce-
ment learning from human feedback (RLHF)(Stiennon et al.
2020), have exhibited extraordinary competencies in lan-
guage understanding and reasoning. Moreover, a range of
open-source LLMs, such as Flan-T5(Chung et al. 2022),
Vicuna(Chiang et al. 2023), LLaMA(Touvron et al. 2023),
and Alpaca(Taori et al. 2023), have notably accelerated ad-
vancements and made significant contributions to the com-
munity(Zhu et al. 2023; Zhang et al. 2023a). Following this,
substantial efforts have been invested in engineering LLMs
adept at managing multimodal inputs and tasks, leading to
the advent of MM-LLMs.
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Figure 2: The model can generate either text or images, depending on the specific requirements. If only normal conversations
using the LLM are needed, then only this frozen LLM is used. If the model believes that an image needs to be generated,
then the fine-tuned LLM is used as the text encoder for stable diffusion. Throughout the training process, less than 1% of the
parameters need to be adjusted, and its generation effect is comparable to the original version of stable diffusion.

On one hand, a large number of researchers are de-
veloping fundamental MM-LLMs by aligning the effi-
ciently trained encoders of various modalities to the tex-
tual feature space of LLMs, thus allowing LLMs to inter-
pret inputs from other modalities(Huang et al. 2023; Zhu
et al. 2023; Su et al. 2022; Koh, Fried, and Salakhutdi-
nov 2023). For example, Flamingo(Alayrac et al. 2022) em-
ploys a cross-attention layer to associate a fixed image en-
coder with the LLMs. BLIP-2(Li et al. 2023a) leverages
a Q-Former to transform the input image queries into the
LLMs. LLaVA(Liu et al. 2023) uses a simple projection
scheme to link image features to the word embedding space.
There are also several similar methods for creating MM-
LLMs that can understand videos (e.g., Video-Chat(Li et al.
2023b) and Video-LLaMA(Zhang, Li, and Bing 2023)), au-
dio (e.g., SpeechGPT(Zhang et al. 2023b)), etc. Importantly,
PandaGPT(Su et al. 2023) achieves a comprehensive under-
standing of six different modalities at once by integrating the
multimodal encoder, i.e., ImageBind(Girdhar et al. 2023).

However, these MM-LLMs are all constrained by the lim-
itation of only perceiving multimodal data and not generat-
ing content in arbitrary modalities. In this paper, we concen-
trate on the aspect of content generation. Using image gen-
eration as an example, we explore the impact of fine-tuning
a minimal number of parameters on multimodal generation
tasks.

Method

This section primarily consists of two parts. Firstly, we
will provide a brief introduction to the LLaMA(Touvron
et al. 2023), RepAdapter(Luo et al. 2023), and stable dif-
fusion(Rombach et al. 2022), which will be utilized in the
subsequent sections. Following that, we will delve into a de-
tailed explanation of the overall structure of the model pro-
posed in this paper.

Background Knowledge
LLaMA. Meta AI’s LLaMA 2(Touvron et al. 2023) is an
open-source large language model for research and com-
mercial use. It includes pre-trained and fine-tuned models
(LLaMA Chat, Code LLaMA) with parameters from 7 to 70
billion. The pre-trained model was trained on 2 trillion to-
kens, double the context length of LLaMA 1, and fine-tuned
models were trained on over 1 million human annotations.

LLaMA 2 surpasses other open-source models in vari-
ous benchmarks, including inference, coding, proficiency,
and knowledge tests. LLaMA Chat is pre-trained on pub-
lic online data, and fine-tuned models use public instruc-
tion datasets and over 1 million human annotations. Code
LLaMA, a code generation model, is built on LLaMA 2 and
trained on 500 billion code tokens.

RepAdapter. RepAdapter(Luo et al. 2023) is a parameter-
efficient adapter for large visual models, integrating into
most visual models through structural reparameterization.
It achieves zero cost in the inference process and gains ad-
vantages in parameter efficiency and performance through
sparse design and effective placement of the adapter struc-
ture.

RepAdapter’s performance and efficiency were validated
on 27 benchmark datasets of three visual tasks. It outper-
forms full adjustment by 7.2% on average, saving up to 25%
of training time, 20% of GPU memory, and 94.6% of stor-
age cost of ViT-B/16 on VTAB-1k. Its generalization ability
has been validated by a series of visual models.

Stable Diffusion. Stable Diffusion, a Latent Diffusion
Model (LDM) implementation, is a high-resolution image
synthesis model. It generates images by iteratively denoising
data in latent space and decoding the results into an image.
This allows image generation on consumer-grade GPUs in
seconds, lowering deployment thresholds.

These iterative models take random noise, conditioned by
text or images, as input. They learn to remove this noise it-
eratively, resulting in a final image.



These models can be trained on limited resources while
maintaining quality and flexibility. The introduction of
cross-attention layers transforms the diffusion model into a
powerful generator for general conditional inputs like text or
bounding boxes, and high-resolution synthesis. LDMs have
achieved a new technical level in image restoration and com-
petitive performance in tasks like unconditional image gen-
eration, semantic scene synthesis, and super-resolution, with
significantly reduced computational requirements compared
to pixel-based DMs.

Model Design
As shown in Figure 2, the model is mainly composed of a
fine-tuned LLM and stable diffusion. To align the LLM with
the text encoder of stable diffusion, we used mapping layers
for mapping and used a parameter-efficient adapter to fine-
tune the LLM.

Firstly, after inputting the text, the model will use a router
to determine whether the input instruction involves an image
generation task. Specifically, we use the simple naive Bayes
algorithm. We generated hundreds of instructions with GPT-
4 as a corpus. If not generating images, it will use the LLM
for normal conversation. At this time, we will not add an
adapter to the LLM, and we will use all the parameters pre-
trained by the LLM without any modification. If the model
determines that the input prompt is asking for image genera-
tion, then we will add a trained adapter to the LLM and con-
nect a mapping layer to map the output of the LLM to the
same input dimension required by the diffusion model. At
this time, the LLM serves as the text encoder of the diffusion
model, inputs the text conditioning into the diffusion model,
and guides the diffusion model to generate the picture re-
quired by the prompt. Through such operations, we can use
the same LLM for both chatting and text-to-image tasks. The
parameters of the adapter and mapping layers are less than
1% of the entire model, which greatly reduces the training
cost. In addition, by using different adapters, the LLM can
also serve as the text encoder of models that generate audio,
video, etc. Due to time and computational constraints, we
were unable to demonstrate such results here, which is our
future work.

Implementation. In this model, we chose LLaMA2-chat-
7B as the LLM(Touvron et al. 2023). Before entering the
mapping layers, we extract the features of the last hid-
den layer of LLaMA2-chat-7B, which is 4096-dimensional.
Then we directly use multiple linear layers to map the 4096-
dimensional features to 768 dimensions, which serves as
the input to the diffusion model. The hidden dimension
of the linear layer is set to 512. For the adapter, we use
RepAdapter(Luo et al. 2023) on all linear layers. This is be-
cause RepAdapter performs well in the task of fine-tuning
the LLM, and it can add no burden to the inference process
through reparameterization. Finally, considering the ease of
training and the amount of reference experience, we use
stable diffusion v1.4 as the diffusion model. The output of
the LLM after mapping serves as the text condition input
to stable diffusion v1.4. The size of the generated image is
512*512.

Training. In response to the characteristics of the model,
we propose a two-stage training strategy: the mapping layer
stage and the adapter stage. Let’s use c to represent the input
text.

In the mapping layer stage, we only train the linear map-
ping layers. We make the features of the LLM after mapping
close to the result of the CLIP-encoded text originally used
by stable diffusion. So we propose caption loss:

Lcap = MSE(Mapping(LLM(c)), CLIP (c)) (1)

The training at this stage can be seen as a form of distilla-
tion, where we make the output of the LLM similar to CLIP
after mapping through the mapping layers. After this stage
of training, the model can already generate decent images,
but there is still a certain gap compared to stable diffusion.

In the adapter stage, we insert adapters into all linear lay-
ers of the LLM (including mapping layers). In addition to
freezing all parameters of the LLM as before, this stage also
freezes the parameters of the mapping layers. The adapter
stage uses two losses. In addition to the caption loss shown
in Equation (1), we also use the diffusion loss Ldif in this
stage, which is used in the diffusion model’s u-net to predict
noise.

Therefore, the total loss of the adapter stage can be ex-
pressed as:

Ltotal = Lcap + λ ∗ Ldif (2)
Where Lcap is the caption loss and Ldif is the diffusion loss.
And λ denotes the coefficient to balance these two losses. In
practice, we set λ to 0.1.

After two stages of training, the image generation effect
of the model is comparable to that of stable diffusion. Dur-
ing the entire training process, we only used 3 Nvidia A800
GPUs and trained for two weeks. The trainable parameters
in the entire model account for less than 1% of the entire
model, and due to the use of reparameterization technology,
adding an adapter will not have any impact on the inference
speed. Using such a simple and efficient training method, in
the future, we can use just one LLM to simultaneously ac-
complish tasks such as text-to-audio and text-to-video, and
the training cost is only a few tens of Nvidia A800 GPU
days.

Experiments
Firstly, we have empirically demonstrated that our model
performs comparably to stable diffusion in the task of text-
to-image generation. Additionally, we conducted a series of
ablation experiments to validate the rationality of our design.

Text-to-image
Dataset. The Microsoft COCO (Common Objects in Con-
text) dataset(Lin et al. 2014) is a widely recognized bench-
mark for evaluating the performance of text-to-image syn-
thesis models. It contains over 200,000 labeled images span-
ning 80 categories, providing a diverse and comprehensive
dataset for training and validating models.

Each image in the COCO dataset has at least five different
captions, providing rich textual descriptions that correlate
with the visual content. This makes it ideal for text-to-image



Settings FID CLIP-Sim User Study

SD v1.4 15.17 0.3137 58.33%

Ours 15.21 0.3021 41.67%

w/o Ldif 16.02 0.3013 -

w/o Adapter 20.32 0.2929 -

w/o Adapter and Ldif 16.49 0.2995 -

Table 1: The results of our model and the ablation experiments are presented. Notably, the results of our model show a minimal
difference compared to the original version of stable diffusion.

tasks, as it allows models to learn the complex relationships
between textual inputs and their corresponding visual repre-
sentations.

We use the COCO dataset to train our text-to-image syn-
thesis model. The dataset’s diversity, in terms of visual con-
tent and associated textual descriptions, enables our model
to learn to generate a wide range of images from textual
descriptions. The large number of images ensures that our
model encounters a variety of scenarios during training, en-
hancing its ability to generalize to unseen inputs during test-
ing.

We also use the COCO dataset for validation and testing,
allowing us to quantitatively evaluate our model’s perfor-
mance. This ensures that our model generates visually ap-
pealing images that accurately reflect the provided textual
descriptions.

Metrics. In the evaluation of text-to-image synthesis mod-
els, two key metrics are often employed: the Frechet Incep-
tion Distance (FID)(Heusel et al. 2017) and CLIP-similarity.

Frechet Inception Distance (FID) is a metric used to quan-
titatively evaluate the quality of generated images by mea-
suring the statistical similarity between the distribution of
generated and real images. Lower FID scores suggest that
the generated images are of higher quality and more realis-
tic. The FID score is computed using features extracted from
an intermediate layer of the Inception network, which are
assumed to follow a Gaussian distribution. The Frechet dis-
tance between these two Gaussians is then calculated, pro-
viding a measure of the distance between the distributions
of real and generated images.

CLIP-similarity is a metric designed to assess the seman-
tic alignment between a generated image and the input text.
It utilizes the CLIP (Contrastive Language-Image Pretrain-
ing) model, which is trained to understand images and text in
a joint embedding space. The CLIP similarity score is com-
puted as the cosine similarity between the CLIP embeddings
of a generated image and the corresponding input text. A
higher CLIP-similarity score indicates better semantic align-
ment between the generated image and the input text.

In our experiments, we use both FID and CLIP similarity
to evaluate the performance of our text-to-image synthesis
model. The FID score provides a measure of the visual qual-
ity of our generated images, while the CLIP-similarity score
assesses the semantic alignment between our generated im-
ages and the input text. Together, these two metrics provide

a comprehensive evaluation of our model’s performance.

Results. As shown in Table 1, our model’s image genera-
tion capability is very close to the original version of stable
diffusion, with only a slight increase in FID by 0.4 and a de-
crease in CLIP similarity by 0.0124. To ensure that these
metrics adequately measure the image generation perfor-
mance of our model, we also conducted a user study. We
generated images from 100 prompts for both models and
asked participants, who were unaware of the models’ iden-
tities, to choose which model generated better images based
on text-image matching and image realism. The final results
showed that the generation effects of the two models are
comparable. According to the feedback of the participants,
our model mainly has a slight gap in image-text matching,
which is also consistent with the quantitative results.

Ablation Study
To validate the rationality and non-redundancy of our model
design, we conducted a series of ablation experiments, as
shown in Table 1. Firstly, if diffusion loss is not used in both
stages of training, the results obtained are slightly inferior to
those using diffusion loss, as shown in the third row of the
table. The most interesting part is the last two rows of the
table. If we remove the adapter but keep the loss unchanged,
the image generation effect will be very poor. However, if
the adapter is not used and diffusion loss is also not used,
the image generation effect can still be acceptable. We spec-
ulate that without the use of the adapter and only using the
mapping layer, it may be difficult to optimize the pixel-level
loss of diffusion loss, because the representation capability
of the mapping layer is too weak. Therefore, diffusion loss
must be used in conjunction with the adapter.

Conclusion
This paper proposes that by using only the adapter and map-
ping layers, with less than 1% of the parameters fine-tuned,
the Language-to-Latent Model (LLM) can be combined with
the diffusion model. Experiments show that its text-to-image
generation performance is comparable to that of stable diffu-
sion. More importantly, using this method, models for text-
to-video and text-to-audio can also be integrated. By fine-
tuning only one LLM, it is possible to connect text with
many modalities. Moreover, the training cost is low, and the
practical use effect is good.
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